package icon

python

Tue, 20 Nov 2018 22:44:47 UTC

General purpose programming language

Related notebook

BioTuring

Only CPU
DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors

Single-cell RNA sequencing (scRNA-seq) data often encountered technical artifacts called "doublets" which are two cells that are sequenced under the same cellular barcode. Doublets formed from different cell types or states are called heterotypic and homotypic otherwise. These factors constrain cell throughput and may result in misleading biological interpretations. DoubletFinder (McGinnis, Murrow, and Gartner 2019) is one of the methods proposed for doublet detection. In this notebook, we will illustrate an example workflow of DoubletFinder. We use a 10x Genomics dataset which captures peripheral blood mononuclear cells (PBMCs) from a healthy donor stained with a panel of 31 TotalSeqâ„¢-B antibodies (BioLegend).

Mucus glandular cells

Breast myoepithelial cells

More

BioTuring

Required GPU
PopV: the variety of cell-type transfer tools for classify cell-types

PopV uses popular vote of a variety of cell-type transfer tools to classify cell-types in a query dataset based on a test dataset. Using this variety of algorithms, they compute the agreement between those algorithms and use this agreement to predict which cell-types have a high likelihood of the same cell-types observed in the reference.

Ionocytes

Respiratory ciliated cells

More

BioTuring

Only CPU
ADImpute: Adaptive Dropout Imputer

Single-cell RNA sequencing (scRNA-seq) protocols often face challenges in measuring the expression of all genes within a cell due to various factors, such as technical noise, the sensitivity of scRNA-seq techniques, or sample quality. This limitation gives rise to a need for the prediction of unmeasured gene expression values (also known as dropout imputation) from scRNA-seq data. ADImpute (Leote A, 2023) is an R package combining several dropout imputation methods, including two existing methods (DrImpute, SAVER), two novel implementations: Network, a gene regulatory network-based approach using gene-gene relationships learned from external data, and Baseline, a method corresponding to a sample-wide average.. This notebook is to illustrate an example workflow of ADImpute on sample datasets loaded from the package. The notebook content is inspired from ADImpute's vignette and modified to demonstrate how the tool works on BioTuring's platform.

Respiratory ciliated cells

Mucus glandular cells

More